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Abstract
We consider a new equation recently found by Schäfer and Wayne,
hereafter named Schäfer–Wayne short pulse equation (SWSPE), describing the
propagation of an ultrashort pulse in nonlinear media. Using some vanishing
boundary conditions, we construct and discuss the N-soliton solutions to the
previous equation by means of the Wadati–Konno–Ichikawa (WKI) method,
which is arguably more direct than the map through the sine-Gordon equation
investigated much earlier by Sakovich and Sakovich (2005 J. Phys. Soc. Japan
74 239, 2006 J. Phys. A: Math. Gen. 39 L361). We particularly focus our
attention on the two-soliton solution as an application. As a result, the
collision process for two-soliton solutions with ‘similar’ amplitudes exhibits
very different behaviour from the case when the amplitudes are ‘dissimilar’.

PACS numbers: 05.45.Yv, 02.70.Hm

1. Introduction

In 1965, Zabusky and Kruskal discovered that the pulselike solitary wave solution to the
Korteweg–de Vries (KdV) equation has a property which has been previously unknown,
namely, that this solution interacts ‘elastically’ with another such solution. They termed these
solutions solitons. Shortly after this discovery, Gardner et al [1, 2] proposed a new method
of mathematical physics. Specifically, they have given a method of solution for the KdV
equation by making use of the ideas of direct and inverse scattering. Lax [3] has considerably
generalized these ideas, and Zakharov and Shabat [4] have shown that the method indeed
works for another physically significant nonlinear evolution equation, namely, the nonlinear
Schrödinger equation. Using these ideas, Ablowitz et al [5, 6] have developed a method to
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find a rather wide class of nonlinear evolution equations solvable by these techniques. They
have termed the procedure the inverse scattering transform (IST). There have been numerous
developments in ‘solitons and IST’ area, which have aroused considerable interest among
mathematicians, physicists and engineers.

It is well known that solitons appear as a result of a balance between weak nonlinearity and
dispersion. Soliton is defined as a nonlinear wave characterized by the following properties:

(i) a localized wave propagates without change of its properties (shape, velocity, etc);
(ii) localized waves are stable against mutual collisions and retain their identities.

Recently, in addition to the peakon solutions (a special type of weak solution of the
(1+1)-dimensional Camassa–Holm (CH) equation [7]), some other types of weak solutions
in nonlinear systems have attracted much attention. Among them, the so-called compacton
solution is one of the most important excitations. Compacton solutions describe the typical
(1+1)-dimensional soliton solutions with finite wavelength when the nonlinear dispersion
effects are included in the model [8] and may have many interesting properties and possible
physical applications [9]. For instance, the compacton equations may be used to study the
motion of ion-acoustic waves and a flow of a two-layer liquid. On the other hand, Agüero
and Paulin [10] have analysed the generalized φ4 or double-well model with anharmonic
interparticle interaction in the continuum limit by considering two types of boundary
conditions: the trivial and the condensate types of boundary conditions at infinity. The
most remarkable representatives of the structures they have found are the so-called drop
compactons (solitons with compact support in the shape of hard spheres), cusps, loops, peak
solitons (peakons) and defects.

Moreover, initial value problems for a number of nonlinear evolution equations, most
of which are closely connected with physical problems, can be solved by means of the IST.
Recently, Wadati et al [11] have found a new group of integrable nonlinear evolution equations
while investigating a generalization of the IST. One member of this group is of the form

yxt + sign

(
dx

ds

) [
yxx(

1 + y2
x

)3/2

]
xx

= 0, (1)

where x is the characteristic coordinate, t is the time along the coordinate, y is the spatial
Cartesian and s is the arc length along the solution curve. The subscripts denote the partial
differentiation. The IST scheme for equation (1) has been given by Konno et al [12–14], when
only the consequences of a single loop soliton solution have been discussed. This IST scheme
has been named Wadati–Konno–Ichikawa (WKI)-type eigenvalue problem.

The purpose of this paper is to discuss the WKI method for a recent equation known
as the Schäfer–Wayne short pulse equation (SWSPE) [15] and derive the N-soliton solutions
under the vanishing boundary conditions. Some interests are particularly paid for one- and
two-soliton solutions as an application. It seems noteworthy to emphasize that Sakovich and
Sakovich [16] may have found much earlier the N-soliton solutions to the SWSPE while
constructing a map to the sine-Gordon equation. However, while investigating the two-soliton
scattering behaviour, this map may not give more information concerning the ratio of the
amplitudes of the soliton solutions.

Working with nonlinear evolution equations of the first type, as identified by WKI, Shimizu
and Wadati [17] have derived the appropriate Gel’fand–Levitan equation and obtained the
single soliton solution. In section 2, we shall modify their analysis to obtain the Gel’fand–
Levitan equation for the system corresponding to the SWSPE. Then, in section 3, we shall
obtain the N-soliton solution followed by two applications N = 1 and N = 2. As a result of
this, we shall see that the collision process for two-soliton solutions with ‘similar’ amplitudes
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exhibits very different behaviour from the case when the amplitudes are ‘dissimilar’. The
collision process of a one soliton with positive amplitude and another of the same type with
negative amplitude will also be discussed. Finally, in section 4, we will present a brief
summary of the work.

2. The inverse scattering problem

The SWSPE is given by [15]

yxt = y + (y3)xx/6, (2)

where y is an observable and x and t are spatial and time-like coordinates, respectively. This
equation provides a better approximation to the solution of Maxwell’s equation. However,
it seems to describe not only short pulses within a nonlinear medium but also multivalued
solutions such as loop-like soliton.

Let us consider the following eigenvalue problem for the evolution equation (2):

v1x + ıλv1 = λyxv2, v2x − ıλv2 = −λyxv1, (3)

where ı2 = −1, λ being the spectral parameter, and the time dependences of the eigenfunctions
have the form

v1t = A(λ, y, yx)v1 + B(λ, y, yx)v2, v2t = C(λ, y, yx)v1 − A(λ, y, yx)v2. (4)

Noting that (vjx)t = (vjt )x, j = 1, 2, and assuming that the eigenvalues λ are time-
invariant, we readily find that A(λ, y, yx), B(λ, y, yx) and C(λ, y, yx) satisfy the following
set of equations:

Ax − λ(B + C)yx = 0,

λyxt − Bx − 2ıλB − 2λAyx = 0,

λyxt + Cx − 2ıλC + 2λAyx = 0,

(5)

which combined with equation (2) yields

A = ı(1 − 2λ2y)/4λ, B = y(λyyx − ı)/2, C = −y(λyyx + ı)/2. (6)

The boundary conditions are such that y → 0 and yx → 0 as |x| → ∞. The full inverse
scattering method has been given in reference [2] by Konno et al, and will be used as the
starting point of the resolution of the SWSPE, with the notation therein.

For real λ, the associated Jost functions may be defined as

φ → (1, 0) exp(−ıλx),

φ̄ → (0,−1) exp(ıλx),

}
for x → −∞ (7)

and

ψ → (0, 1) exp(ıλx),

ψ̄ → (1, 0) exp(−ıλx),

}
for x → +∞. (8)

The scattering coefficients may also be defined as follows

φ = aψ̄ + bψ, φ̄ = −āψ + b̄ψ̄, (9)

where

aā + bb̄ = 1. (10)
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Then, for complex λ, it may be shown that

φ̄1(λ) = φ�
2(λ

�), φ̄2(λ) = −φ�
1(λ

�), ψ̄1(λ) = ψ�
2 (λ�), ψ̄2(λ) = −ψ�

1 (λ�),

(11)

where (�) denotes the complex conjugation. From equations (7)–(9), we get

ā(λ) = a�(λ�), b̄(λ) = b�(λ�). (12)

In order to examine the analytic properties of the Jost functions, we now follow Konno et al
[18] and introduce

φ1 = exp

{
−ıλx +

∫ x

−∞
σ(λ, s) ds

}
. (13)

Substitution of equation (13) into (3) and (4) yields

∂t (yx�) = 1

λ
∂x(A + B�), 2ıλ(yx�) = λy2

x + λ(yx�)2 + yx∂x(yx�/yx), (14)

where � = φ2/φ1.
The first equation of the system (14) is in the form of conservation law. We expand yx�

in the power series of 1/ıλ,

yx� =
∞∑

k=0

gk(ıλ)−k. (15)

Substituting equation (15) into the second equation of the system (14) and equating the terms
of the same powers of 1/λ, we obtain a recursion formula for the conserved densities gk ,

2ıgk = y2
xδk,0ı

k +
k∑

n=0

gngk−n + ıyx∂x(gk−1/yx). (16)

The first three conserved densities are

g0 = ı
(
1 − ε

√
1 + y2

x

)
, ε = ±1,

g1 = yxx

(
1 − ε

√
1 + y2

x

)/
2yx

√
1 + y2

x ,

g2 = − y2
xx

8ı
(
1 + y2

x

)5/2
− ∂x

{
yx

4ı
(
1 + y2

x

)∂x

(
1 − √

1 + y2
x

yx

)}
.

(17)

With these gk(k = 0, 1, 2, . . .), conservation laws for equation (2) are expressed by means of
equation (14). By expanding σ in the power series of 1/ıλ as

σ =
∞∑

k=−1

σk(ıλ)−k, (18)

we get

σk = gk+1/ı. (19)

For example,

σ−1 = g0/ı, σ0 = g1/ı. (20)

The asymptotic behaviour of φ for large |λ| may be written as

φ = (1, ıσ−1/yx) exp

{
−ıλx + ıλ

∫ x

−∞
σ−1 ds +

∫ x

−∞
σ0 ds

}
+ o(1/λ). (21)
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The analytic property of the scattering cœ fficient a may be characterized by writing

a = lim
x→∞ φ1 exp(ıλx)

= exp

{
ıλ

∫ ∞

−∞
σ−1 ds +

∫ ∞

−∞
σ0 ds

}
+ o(1/λ). (22)

In the same way, we can obtain the asymptotic behaviour of φ̄, ψ and ψ̄ . We summarize these
results as follows:

φ = (1, ıσ−1/yx) exp(−ıλx + ıλε− + µ−) + o(1/λ),

φ̄ = (−ıσ−1/yx,−1) exp(ıλx − ıλε− + µ−) + o(1/λ),

ψ = (ıσ−1/yx, 1) exp(ıλx + ıλε+ − µ+) + o(1/λ),

ψ̄ = (1, ıσ−1/yx) exp(−ıλx − ıλε+ − µ+) + o(1/λ),

a = exp(ıλε + µ) + o(1/λ),

(23)

where

ε− =
∫ x

−∞
σ−1 ds, µ− =

∫ x

−∞
σ0 ds, ε =

∫ ∞

−∞
σ−1 ds,

ε+ =
∫ ∞

x

σ−1 ds, µ+ =
∫ ∞

x

σ0 ds, µ =
∫ ∞

−∞
σ0 ds.

(24)

Thus, when yx has compact support, φ exp[ıλ(x − ε−)], φ̄ exp[−ıλ(x − ε−)],
ψ exp[−ıλ(x + ε+)], ψ̄ exp[ıλ(x + ε+)] and a exp(−ıλε) are entire functions of λ. By
considering the integral∫

C

dλ′

(λ′ − λ)

1

a(λ′) exp(−ıλ′ε)
(φ1(λ

′), φ2(λ
′)) exp[ıλ′(x − ε−)], (25)

where the contour (C) is defined to be the contour in the complex λ′ plane, starting from
λ′ = −∞ + ı0+, passing over all zeros of a(λ′) and ending at λ′ = ∞ + ı0+ for λ′ below C;
we shall derive the Gel’fand–Levitan equation for our problem.

Using equation (9) into expression (25) yields∫
C

dλ′

(λ′ − λ)

1

a(λ′) exp(−ıλ′ε)
(φ1(λ

′), φ2(λ
′)) exp[ıλ′(x − ε−)]

=
∫

C

dλ′

(λ′ − λ)
(ψ̄1(λ

′), ψ̄2(λ
′)) exp[ıλ′(x + ε+)]

+
∫

C

dλ′

(λ′ − λ)

b(λ′)
a(λ′)

(ψ1(λ
′), ψ2(λ

′)) exp[ıλ′(x + ε+)]. (26)

The left-hand side of equation (26) reduces to

LHS = −ıπ(1, ıσ−1/yx) exp(−µ+), (27)

and the right-hand side to

RHS = −2πı(ψ̄1(λ), ψ̄2(λ)) exp[ıλ(x + ε+)] + ıπ(1, ıσ−1/yx) exp(−µ+)

+
∫

C

dλ′

(λ′ − λ)

b(λ′)
a(λ′)

(ψ1(λ
′), ψ2(λ

′)) exp[ıλ′(x + ε+)]. (28)

Therefore,

(ψ̄1(λ), ψ̄2(λ)) exp[ıλ(x + ε+)] = (1, ıσ−1/yx) exp(−µ+)

+
1

2πı

∫
C

dλ′

(λ′ − λ)

b(λ′)
a(λ′)

(ψ1(λ
′), ψ2(λ

′)) exp[ıλ′(x + ε+)]. (29)
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Kernels K1 and K2 may further be defined as follows:

(ψ1, ψ2) = (0, 1) exp[ıλ(x + ε+(x)) − µ+(x)]

+
∫ ∞

x

(λK1(x, z),K2(x, z)) exp[ıλ(z + ε+(x)) − µ+(x)] dz, (30)

with the following conditions

lim
z→∞ K1(x, z) = 0, lim

z→∞ K2(x, z) = 0. (31)

Comparing the partial integrated equation (30) with (23), we get

K1(x, x) = σ−1/yx

= (
1 − ε

√
1 + y2

x

)/
yx. (32)

We notice here that the particular case yx = 0 may render K1(x, x) undetermined. In order
to get the bounded value of K1(x, x), it is necessary to impose a condition that, in contrast to
equation (17), ε = +1. K1(x, x) may then be written as

K1(x, x) = (
1 −

√
1 + y2

x

)/
yx

= −yx

/(
1 +

√
1 + y2

x

)
, (33)

taking 0 as a value for yx = 0. This value with equation (31) corresponds to |x| → ∞. It
seems also worth noting that replacing yx = 0 into equation (2) yields y = 0, which may be
observed as asymptotic. Throughout this paper, we will then consider the boundary condition
y = 0 for |x| → ∞.

Now, combining equations (29) and (30), we finally obtain the coupled Gel’fand–Levitan
equations for x � w as follows:

K�
1(x,w) − F(w + x) −

∫ ∞

x

K2(x, z)F (w + z) dz = 0,

K�
2(x,w) −

∫ ∞

x

K1(x, z)F ′′(w + z) dz = 0,

(34)

where

F(z) = 1

2π

∫
C

b(λ)

a(λ)

1

λ
exp[ıλ(z + 2ε+(x))] dλ,

F ′′(z) = − 1

2π

∫
C

b(λ)

a(λ)
λ exp[ıλ(z + 2ε+(x))] dλ.

(35)

We note here that F ′′(w, z) = ∂2F/∂z2. The time dependence of the scattering data is found
from equations (4) and (6) to be

a(λ, t) = a(λ, 0), b(λ, t) = b(λ, 0) exp(−ıt/2λ). (36)

The bound states are given by the zeros of a(λ) in the upper-half plane. When all zeros of
a(λ) in the upper-half plane are simple, F(z) can be expressed as

F(z) = 1

2π

∫ ∞

−∞
ρ(λ, t)

1

λ
exp[ıλ(z + 2ε+)] dλ + ı

k=N∑
k=1

ck

1

λk

exp[ıλk(z + 2ε+(x))], (37)

where

ck(t) = ck(0) exp(−ıt/2λk), ρ(λ, t) = ρ(λ, 0) exp(−ıt/2λk). (38)

Giving the scattering data {ρ(λ, 0), λ; ck(0), λk, k = 1, . . . , N}, we can get F(z) and then
obtain K1(x, x) from the Gel’fand–Levitan equations. This yields the soliton solution by
means of equation (32).
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3. The N-soliton solution

We now discuss the N-soliton solution. The N-soliton solution is obtained under the conditions

ρ(λ, t) = 0, and λ2
k < 0, (39)

so that λk = ıηk , where ηk is a real parameter. This gives, with equation (37),

F(z, t) =
N∑

k=1

ck(t)

ηk

exp[−ηk(z + 2ε+(x))], (40)

where ck are real.
In order to solve the Gel’fand–Levitan equation, the kernels K1 and K2 may take the

following forms:

K1(x, z) =
N∑

k=1

Ak(x) exp[−ηk(x + z + 2ε+(x))],

K2(x, z) =
N∑

k=1

Bk(x) exp[−ηk(x + z + 2ε+(x))],

(41)

where Ak and Bk are real functions.
Substituting equations (40) and (41) into (34), we get

Ak − ck

ηk

[
N∑

l=1

Bl

exp[−2ηl(x + ε+(x))]

ηk + ηl

]
= ck

ηk

,

Bk − ηkck

[
N∑

l=1

Al

exp[−2ηl(x + ε+(x))]

ηk + ηl

]
= 0.

(42)

The Ak are obtained as

Ak = Dk

D
, (43)

where D represents the determinant of the cœ fficient matrix defined as

D =
∣∣∣∣ I F

G I

∣∣∣∣ , (44)

with

Fkl = − ck

ηk(ηk + ηl)
exp[−2ηl(x + ε+(x))], Ikl = δkl,

Gkl = − ηkck

(ηk + ηl)
exp[−2ηl(x + ε+(x))],

(45)

while the determinant Dk is defined as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . 0 c1/η1 0 . . . . F11 F12 · · · F1N

. . . . . . . . . . F21 F22 · · · F2N

. . . 1 ck−1/ηk−1 0 . . . . Fk−11 Fk−12 · · · Fk−1N

. . . 0 ck/ηk 0 . . . . Fk1 Fk2 · · · FkN

. . . 0 ck+1/ηk+1 1 . . . . Fk+11 Fk+12 · · · Fk+1N

. . . . . . . . . . . . . .

. . . . . . . . . 1 FN1 FN2 · · · FNN

G11 G12 . . G1k−1 0 G1k+1 . . G1N 1 . . 0
G21 G22 . . G2k−1 0 G2k+1 . . G2N 0 . . 0
. . . . . . . . . 0 . . . 0

GN1 GN2 . . GNk−1 0 GNk+1 . . GNN 0 . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(46)
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Thus,

K1(x, x) =
N∑

k=1

Ak(x) exp[−2ηk(x + ε+(x))]. (47)

Using equation (32), we get

yx = 2
K1(x, x)

K2
1 (x, x) − 1

. (48)

Making use of equations (20) and (24), we find that

[x + ε+(x)]x =
√

1 + y2
x . (49)

Introducing some variable s defined as

sx =
√

1 + y2
x , (50)

equation (49) is written in the form

[x + ε+(x)]x = sx, (51)

so that the meaning of [x + ε+(x)] then becomes clear. Therefore, equation (49) is expressed
as

[x + ε+(x)]x = 1 + K2
1 (x, x)

1 − K2
1 (x, x)

. (52)

As both K1(x, x) and yx are functions of [x + ε+(x)], it is better to transform from the
independent variable x to the arc length

u = x + ε+(x), (53)

when investigating the soliton solution. Using the independent variable u, we obtain

yu = − 2K1(u)

1 + K2
1 (u)

(54)

and

[ε+(u)]u = 2K2
1 (u)

1 + K2
1 (u)

. (55)

On account of this parametrization of the position along the solution curve, it is possible to
express the soliton solutions as a single-valued function if the solitons are described in terms
of u.

Throughout this paper, we pay some attention to finite solutions with the following
boundary conditions:

y(u) → 0

ε+(u) → 0

}
as u → ∞. (56)

Integrating equations (54) and (55) with respect to u, we finally arrive at the N-soliton solution

y = −
∫ u

−∞
du

2K1(u)

1 + K2
1 (u)

, (57)

and

ε+(u) =
∫ u

−∞
du

2K2
1 (u)

1 + K2
1 (u)

, (58)
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Figure 1. Loop (solid line) and hump (dotted line) solitons.

where K1(u) is one of the solutions of the Gel’fand–Levitan equations, and is given by

K1(u) =
N∑

k=1

Ak(u) exp(−2ηku), (59)

and

Ak − ck

ηk

[
N∑

l=1

N∑
m=1

clηlAm

exp[−2(ηl + ηm)u]

(ηk + ηl)(ηl + ηm)

]
= ck

ηk

. (60)

The last two equations are derived from equations (42) and (47). We note that the parameters
ηk(k = 1, . . . , N) merely denote the eigenvalues of the soliton solutions.

We pay some attention to the special cases N = 1 and N = 2, which refer to one-
and two-soliton solutions, respectively. Their expressions may be easily derived from
equations (57) and (58) after small calculations. As a result, the one-soliton solutions ηy

versus 2ηξ with ξ = x − vt, v being the velocity, depicted in figure 1, are of two types,
loop- and hump-like represented by solid and dotted lines, respectively. These two structures
may be related by the transformation η → −η, provided that the boundary condition given
by equation (56) is satisfied. Indeed, with the relation λ = −ıη(η > 0) introduced in the
WKI-method while investigating the one-soliton solutions, the hump-like solution is found
whereas the other solution of loop-like shape, is related to λ = ıη(η > 0). The maximum
amplitude and phase velocity in the (u, t)-spacetime of the previous structures are given by
1/η and −1/(2η2), respectively. Thus, a larger loop or hump soliton always moves faster
than a smaller one in the negative direction of (u, t)-spacetime. It seems worth noting that
the soliton solution with negative amplitude may be derived from the positive one simply by
changing y into −y. The soliton solution with negative amplitude is conventionally called
anti-soliton solution.

Concerning the two-soliton solutions, we study the behaviour of y(x, t) versus x at some
given time t. We find two kinds of features depending on the ratio of the two eigenvalues
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Figure 2. The collision process for two loop-like (solid line) and two hump-like (dotted line)
solitons with η1 = 0.5 and η2 = 0.2.

η1 and η2 characterizing each single soliton. These features which are due to the nonlinear
interaction may be described by the shifts �x1 and �x2 of the individual solitons. These shifts
however satisfy the following relation:

2∑
j=1

ηj�xj �= 0, (61)

which shows that the centre of mass is not a constant of motion.
We illustrate three representative cases as follows:

• two-soliton solutions with ‘dissimilar’ amplitudes as shown in figure 2;
• soliton and anti-soliton solutions as shown in figure 3.
• two-soliton solutions with ‘similar’ amplitudes as shown in figure 4;

In these figures, loop and hump soliton solutions are represented by solid and dotted lines,
respectively.

In figure 2, a larger soliton for η2 = 0.2 with the faster velocity and larger energy attracts
the smaller one for η1 = 0.5 which travels along before being shifted after the interaction.
This kind of scattering feature may also be seen in figure 3 where the small soliton η1 = 0.3
travels along the anti-soliton η2 = −0.2.

In figure 4, the solitons attract and collide. The larger and faster soliton for η2 = 0.2
with the larger energy pushes by contact the smaller one for η1 = 0.3 in such a way that the
solitons do not overlap, though they seem to exchange their amplitudes during the period of
the nonlinear interaction.

We have further plotted many curves y(x, t) versus x corresponding to different values of
the ratio η2/η1(0 < η2 < η1), but without any report in the present paper for some convenience.
As a result, we find that soliton solutions with ‘dissimilar’ amplitudes (η2/η1 < 0.6) attract
elastically in a way that the smaller soliton always travels along the larger one. Solitons with
‘similar’ amplitudes (0.6 � η2/η1 � 1) seem to repel and exchange their amplitudes during
the scattering process. We should also note that in the case of η2 < 0 < η1, the smaller soliton
always travels around the larger one even if their magnitudes are ‘similar’.
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Figure 3. The collision process of a soliton for η1 = 0.3 and an anti-soliton for η2 = −0.2. Loop
and hump are represented by solid and broken lines, respectively.
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Figure 4. The collision process for two loop-like (solid line) and two hump-like (dotted line)
solitons with η1 = 0.3 and η2 = 0.2.

4. Summary

We have investigated a partial differential equation of a new type recently derived by Schäfer
and Wayne [15] studying the propagation of an ultrashort pulse in a nonlinear medium. We
have studied the propagation of loop and hump soliton solutions characterized by the previous
novel equation. The corresponding N-soliton solutions have been found analytically by means
of an inverse scattering method. Performing a more detailed analysis, the properties of the
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one- and two-soliton solutions have been studied. This method may arguably be more efficient
and straightforward than the map through the sine-Gordon equation investigated much earlier
by Sakovich and Sakovich [16]. As a result, we have found that when two-soliton solutions
of the previous equation with ‘similar’ or ‘dissimilar’ amplitudes collide, they always shift
backwards except when one of them has a negative amplitude. We have observed that, with
these special soliton solutions, the interaction type depends on the ratio of the two eigenvalues
involved. We have also shown that the two basic collision processes with ‘similar’ and
‘dissimilar’ amplitudes, respectively, depend strongly upon a critical value of the ratio of the
two eigenvalues.

Moreover, for some simplicity in our analysis, we have considered, from equation (39),
that ρ(λ, t) = 0 when discussing the N-soliton solution. We can also investigate in detail
the case corresponding to ρ(λ, t) �= 0. This may lead us to a kind of soliton which seems
to breathe. This kind of solution may be composed of an envelop with hump-like shape and
a carrier with oscillating shape. This may constitute another interesting investigation which
will certainly lead us to an essential criterion as we have previously found in this paper.
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